
Linton Sets
Ternions

It is a well known fact that ternions (i.e. three dimensional numbers {x, y, z} do not exist.

But not everything which is 'well known' is necessarily true.

What is true is that numbers of the form x + iy + jz do not 'work' algebraically and are of no 
use in describing the behaviour of vectors in three dimensions.

On the other hand, in mathematics you can define anything you like and there is no objection 
to treating {x, y, z} as a 'numerical' entity provided that you define operations like addition and 
multiplication in a consistent way.

For my purposes I only need to define addition (and subtraction) and squaring (and square 
rooting).

Addition and subtraction are achieved by simply adding or subtracting the X, Y and Z 
components. It is easy to see that this process in independent of the coordinate system chosen 
because it is tantamount to putting the two vectors end to end.

In two dimensions (i.e. the complex plane), multiplication is achieved by multiplying the 
moduli and adding the arguments. In three dimensions the situation is not clear because the two 
'arguments' (azimuth and altitude) are not equivalent and are coordinate specific. On the other hand,
we can plausibly define the square of a ternion, by analogy with that of a complex number, by 
squaring the modulus and doubling the argument where the argument is defined as the angle 
between the vector and the X axis (keeping the new vector in the same plane as the old one and the 
X axis). (This angle is sometimes called the polar latitude.)

The square root of a ternion is therefore seen to have two values: in which the new modulus is
the square root of the original modulus and the argument is halved – the other root being the 
antipodean point.

There is one small problem with this definition. The square root of {-1, 0, 0} is undefined – or
rather, there are an infinite number of possible roots

Julia Sets
The famous Mandelbrot Set and its associated Julia Sets are generated using the iterative 

formula

z ' = z 2
+ C (1)

For any given value of C, there is a set of values of z which are stable under repeated iteration.
Some of these sets are filled and some are fragmentary. Either way, the border of this set is the 
Julia Set for that value of C. These are the points which are only just stable. If you start at one of 
these points, z will hop round the set but if, for example, due to rounding errors, z strays slightly 
outside the set, it will diverge off to infinity. Likewise if is strays into a filled region it will become 
trapped inside. The Julia Set is unstable: it is a repeller.

A simple way of generating the Julia Set for any given point C is to pick a point at random 
and then apply the reverse iteration

z ' = √ z − C (2)



The Julia Set is now an attractor and after 100 or so iterations, you can be pretty sure you are 
very close to the actual set. Now, in order to generate the complete set, since the square root has two
solutions, you should, in theory pursue both options. In practice it is sufficient to choose one of 
them at random and simply iterate thousands of times. There will be some points missing (e.g. the 
point which is reached after choosing the positive root 100 times) but the general shape soon 
becomes clear. It is sometimes a good idea to bias the choice towards the positive or negative root 
in order to ensure that these points do get visited occasionally.

Linton Sets
In order to generate a three dimensional Julia Set (which, with characteristic modesty, I shall 

call a Linton Set) we simply start with a random point P0 and apply equation (2) using the square 
root function defined as above, plotting the resulting points in 3D. If in the unlikely event that z 
happens to jump to a point exactly on the negative X axis then the iterations are stopped and 
restarted with the original initial point.

 There are several special cases to discuss. First let us examine the Linton set for C =              
{-0.8, 0, 0}. In the illustration below the X axis is indicated by a red blob, Y, green, Z, blue and the 
initial point (which is equal to {0, 0.8, 0.8} in this case) is indicated by an orange blob.

It is immediately obvious that the Linton set for this value of C is simply the standard Julia set
for C = (-0.8, 0) but tilted to lie in a plane which includes the initial starting point. It is not too 
difficult to see why. With the Y and Z coordinates of C both being zero, it is possible to rotate our 
coordinate system about the X axis such that the initial point lies in the XY' plane. Now with a Z' 
coordinate of zero, the point is constrained to move in the plane which is defined by the initial point
P0 and the X axis. (I shall call this plane the XP0 plane)

In fact, since we are at liberty to choose the Y and Z axes in any way we like, we can always 
consider the point C to lie in the XY plane – in other words, without loss of generality, we need 
only ever consider cases where C.z = 0.

Consider, for example the Linton set for C = {–0.8, 0.2, 0}. If P0
  lies in the XY plane, then 

subsequent iterations will always lie in that plane and what we get is the standard Julia set for the 
point C = (–0.8, 0.2). In fact, even if  P0.z is not equal to zero, the attractor still seems to work 
because the Z component seems to decay to zero and the resulting fractal still lies flat on the XY 
plane.



It is important to understand why the Z component decays. According to the definition of the 
square root of a ternion, the polar latitude is halved. Now when the polar latitude of z is less than 
90° then the magnitude of the Z component will always decrease. In fact, even when the polar 
latitude is greater than 90° but less the 120°, the Z component will still decrease. Only when the 
polar latitude is greater than 120° will the Z component increase. Now the polar latitude can only be
greater than 120° if the negative root was chosen after the previous iteration. It follows that if we 
choose the positive and negative roots equally often, the Z component of z will decrease more often 
than it will increase.

In order to see the full Linton set, it is necessary to bias the choice of root towards the 
negative root. This is what we get:

The full Linton set  resembles the surface of a piece of Danish pastry which has been twisted.

Where the shape intersects the XY plane, we find the standard Julia set (emphasised here in 
black) but the Linton set is not simply the Julia set rotated about the X axis. (One reason for this is 
that, when the polar latitude of a point is halved in the XP0 plane, the polar angle in the XY plane – 
or, indeed, any other plane – is not exactly halved. It follows that the if the Linton set is sliced along
any other plane which includes the X axis, the shape will not be exactly the same.)

 Looked at from a vertical viewpoint, multiple three dimensional twists and spirals can be 
discerned which have a counterpart in the familiar coloured versions of the Julia set.



Like all strange attractors, the Linton set is independent of the starting point used.

On the other hand, we considered earlier the Linton set for the point {–0.8, 0, 0} and found 
that it did depend on the initial starting point. Of course this is a rather special case but it is worth 
considering further why this point does not generate a 3D Linton set.

In fact, it should. I mentioned earlier that the point {–1, 0, 0} does not have a square root – or 
rather, it has an infinite number of square roots. If at any time z should jump to a point exactly on 
the negative X axis, the next iteration could go anywhere on a circle in the YZ plane. The reason 
why this never happens is that z.z can only reach zero after an infinite number of successive positive
roots – which is never going to happen.

We can, however, simulate the effect by adding a tiny bit of uncertainty into the calculations. 
Normally any inaccuracies are smoothed out by the continual halving and square rooting – but, if 
the point z happens to stray close to the negative X axis, small changes in the Y or Z coordinate can 
make very large changes to the longitude angle and hence to the subsequent location of z.

This is what we get when we add a bit of fuzziness even when the choice of root is 50:50..

This time, however, the set is, of course, simply the surface of revolution of the Julia set.

What about the Linton set for the point C = {0, 0, 0}? The Julia set for C = (0, 0) is the unit 
circle. It will be no surprise, therefore, to learn that the Linton set for {0, 0, 0} is the unit sphere.

The following sequence of images shows how the fractal changes as C moves from the origin 
along the Y axis in steps of 0.2. (To achieve these images I have used both fuzzy arithmetic and a 
slight bias towards one or other root root.)



{0, 0, 0}                                 {0, 0.2, 0}                                 {0, 0.4, 0} 

{0, 0.6, 0}                                 {0, 0.8, 0}                                 {0, 1, 0} 

{0, 1.2, 0}                                 {0, 1.4, 0}                                 {0, 1.6, 0} 

It is quite difficult to make out what is going on here. The three dimensional shapes are so 
complex that, even when the object is rotated in real time, it is difficult to see if and how the various
parts are connected. At first the sphere is distorted and the outline of the intersection of the set and 
the XY plane is, as always, the standard Julia set. When C.y =  ~0.64, the standard Julia set breaks 
up into fragments and the Linton set splits into thin filaments, no longer enclosing a finite volume.

The following images show the Linton set for {0, 1, 0} from various other angles.



     
             Oblique view                                      Looking down the X axis

     
Looking down the Y axis                                     Looking down the Z axis

Another surprising thing about Linton sets is their apparent irregularity. Like Julia sets, Linton
sets have antipodal symmetry. They also have a reflection symmetry which (if we restrict ourselves 
to values of C in which C.z = 0) is reflected in the XY plane. But apart from these symmetries, the 
detailed structure is incredibly complex. This is surprising because the fundamental rules from 
which the set is generated (i.e. the square root and addition rules) are about as simple as they can be,
and it is the simplicity of these rules in the complex plane which causes Julia sets and the 
Mandelbrot set itself to have so much repetitive detail. Consider, for example the Linton set for 
{1, 1.6, 0}:



The curlicue scrolls at the ends of the curves are recognizable features and are reflected in the 
opposite curves and below the XY plane – but they are not replicated on a smaller scale elsewhere.

Here is another nice attractor – this time for {1.4, 1.4, 0}

One last comment. Three dimensional strange attractors such as the Lorentz attractor or the 
Tinkerbell attractor are generally very difficult to find and are often very sensitive to small changes 
in the parameters of the generating equations and may have quite small basins of attraction. Linton 
sets are, however, very robust. There is (I believe) a Linton set for every point in the universe and 
their basins of attraction are infinite!



Cubic Linton Sets
So far we have only used the square root function; but it is straightforward to define the nth 

root of a ternion in a similar way and to use the iterative equation.

z ' =
n√ z − C (3)

 When n  = 3 there are, of course, three roots all lying in the same plane as z and the X axis 
and all at 120° to one another.

This is what we get when n = 3 and C = {1, 0, 0}. (In order to get the complete set it is 
necessary to apply both fuzzy arithmetic and a lot of bias towards the negative roots.)

     
Straight                                                            Fuzzy

As before, when we use accurate arithmetic, the Z component quickly decays and we get the 
standard Julia set for the point C = (1, 0). Only if we apply some fuzziness do we get the full Linton
set which is a sort of teddy bear with three heads!

As another example. Here is the set for the point {0.5 0.5, 0}

     
Straight                                                            Fuzzy

This time we get a misshapen meringue!



Even at places where the standard Julia set is quite fragmentary, interesting Linton sets can be 
found. Here, for example, is the Linton set for {1, 0.8, 0}

The Julia set consists of three scattered groups of spots in the XY plane. In the Linton set, one
of these groups (in blue) is isolated but the other two are connected by circular swirls.

Concluding remarks
How significant are these 'Linton' sets?

To be honest, I rather doubt that there will be announcements of a great new mathematical 
discovery in the papers and a flurry of articles on them in the mathematical journals. But insofar as 
they are a natural extension of the ideas of a Julia set in three dimensions, they are, I think, worth 
someone's attention.

It would be nice if someone with a 3D printer could print some of the solid ones for me but I 
have no idea how you could turn a random list of a quarter of a million three dimensional points 
into a format which such a printer could use!

© J Oliver Linton
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